翻訳と辞書
Words near each other
・ Instruction set
・ Instruction set simulator
・ Instruction step
・ Instruction unit
・ Instruction window
・ Instruction-level parallelism
・ Instructional animation
・ Instructional capital
・ Instructional design
・ Instructional design coordinator
・ Instructional leadership
・ Instructional manipulation check
・ Instructional modeling
・ Instructional rounds
・ Instructional scaffolding
Instructional simulation
・ Instructional Skills Workshop
・ Instructional television
・ Instructional Television Fixed Service
・ Instructional theory
・ Instructions (album)
・ Instructions for an Armed Uprising
・ Instructions Not Included
・ Instructions of Amenemhat
・ Instructions of Kagemni
・ Instructions of Shuruppak
・ Instructions of the Year XIII
・ Instructions per cycle
・ Instructions per second
・ Instructive case


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Instructional simulation : ウィキペディア英語版
Instructional simulation
An instructional simulation, also called an educational simulation, is a simulation of some type of reality (system or environment) but which also includes instructional elements that help a learner explore, navigate or obtain more information about that system or environment that cannot generally be acquired from mere experimentation. Instructional simulations are typically goal oriented and focus learners on specific facts, concepts, or applications of the system or environment.
Today, most universities make lifelong learning possible by offering a virtual learning environment (VLE). Not only can users access learning at different times in their lives, but they can also immerse themselves in learning without physically moving to a learning facility, or interact face to face with an instructor in real time. Such VLEs vary widely in interactivity and scope. For example, there are virtual classes, virtual labs, virtual programs, virtual library, virtual training, etc.
Researchers have classified VLE in 4 types:
* 1st generation VLE: They originated in 1992, and provided the first on line course opportunities. They consisted in a collection of learning materials, discussion forums, testing and e-mail systems all accessible on line. This type of virtual environment was static, and did not allow for interaction among the different components of the system.
* 2nd generation VLE: Originated in 1996, these VLE are more powerful, both in data base integration and functions - planning and administrating, creating and supporting teaching materials, testing and analyzing results. Over 80 forms exist, including Learning Space, WebCT, Top Class, COSE, Blackboard, etc.
* 3rd generation VLE: The novelty of 3rd generation VLE is that they incorporate the newest technologies, accessible in real and non real time (synchronous and synchronous communications), such as audio and video conferences through the internet -‘one to one’ and ‘one to many’, collaboration features for work in groups, seminars, labs, forums, and of course the learning, development, planning, library and administrative functions. Stanford On-line, InterLabs, Classroom 2000 and the system "Virtual University" (VU) are examples of this VLE.
* 4th generation VLE: These are the environments of the future, and represent new learning paradigms, at the center of which are the user and the ‘global resources,’ as opposed to the teacher and the ‘local resources.’ Their main advantage is that learning materials can be created, adapted and personalized to the specific needs and function of each user. Few 4th generations VLE exist, most of them still being in the planning and developing phases. One example of supportive technology is called the ‘multi-agent technology,’ which allows the interface of data among different systems.〔Ivanova, Angel Smrikarov, A (2004). "Some Approaches to Implementation of Virtual Learning Environments. International Conference on Computer Systems and Technologies - CompSysTech’2004. Retrieved on 6/26/09 http://ecet.ecs.uni-ruse.bg/cst04/Docs/sIV/425.pdf〕
== History ==
Simulations of one form or another have been used since the early 1900s as a method for training or training. The United States Defense Modeling and Simulation Coordination Office〔http://www.msco.mil/〕 identifies three main types of simulation: live, virtual, and constructive. Live (live action) and virtual simulations are primarily used for training purposes, whereas a constructive simulation is used to view or predict outcomes like wargaming or stockmarket behavior. Each of these types is based on some reality and is intended to provide the user with a pseudo-experience without the danger, expense, or complexity of real life.
While simulations are used for learning and training purposes, noted authors, such as Clark Aldrich〔Clark Aldrich〕 and Andy Gibbons〔Andy Gibbons〕 (Model-Centered Instruction) suggest that simulations in and of themselves are not instructional. Rather, a simulation only becomes instructional when instructional elements are included that help expose the learner to key parts or concepts of the system or environment. For example, an F-16 simulator is not inherently instructional because it is primarily intended to replicate the F-16 cockpit behavior and the environments the aircraft operates within. The simulator may be used for training purposes, but it requires an instructor or some other external element to identify key learning aspects of the system to the learner.
In education, simulations have had their use under a number of different names. Ken Jones〔Ken Jones〕 in the 1980s defined simulations as interactions between people such as role-playing. Others suggest that experiential learning activities like those found in team training or ropes courses are also simulations because they replicate the human decision-making processes groups may display, albeit in a very different environment. These can be considered instructional simulations because the effective use of these simulation types include using instructional elements to help learners focus on key behaviors, concepts or principles.
With the ever decreasing cost of computing tools, virtual and constructive simulation are being used more and more. Simulation is used more and more in e-learning environments because of improved Web-authoring tools and an increasing demand for performance-based training. As a result, more non-technical personnel are involved designing simulation, a field dominated by engineers and computer scientists.

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Instructional simulation」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.